Electrical Engineering and Systems Science > Systems and Control
[Submitted on 19 May 2022 (v1), last revised 1 Aug 2022 (this version, v3)]
Title:Analysis of relay-based feedback compensation of Coulomb friction
View PDFAbstract:Standard problem of one-degree-of-freedom mechanical systems with Coulomb friction is revised for a relay-based feedback stabilization. It is recalled that such a system with Coulomb friction is asymptotically stabilizable via a relay-based output feedback, as formerly shown in [1]. Assuming an upper bounded Coulomb friction disturbance, a time-optimal gain of the relay-based feedback control is found by minimizing the derivative of the Lyapunov function proposed in [2] for the twisting algorithm. Furthermore, changing from the discontinuous Coulomb friction to a more physical discontinuity-free one, which implies a transient presliding phase at motion reversals, we analyze the residual steady-state oscillations. This is in the sense of stable limit cycles, in addition to chattering caused by the actuator dynamics. The numerical examples and an experimental case study accompany the provided analysis.
Submission history
From: Michael Ruderman [view email][v1] Thu, 19 May 2022 07:14:51 UTC (1,638 KB)
[v2] Sat, 16 Jul 2022 06:16:45 UTC (1,640 KB)
[v3] Mon, 1 Aug 2022 09:49:18 UTC (1,638 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.