Electrical Engineering and Systems Science > Systems and Control
[Submitted on 25 May 2022]
Title:Worldwide Energy Harvesting Potential of Hybrid CPV/PV Technology
View PDFAbstract:Hybridization of multi-junction concentrator photovoltaics with single-junction flat plate solar cells (CPV/PV) can deliver the highest power output per module area of any PV technology. Conversion efficiencies up to 34.2% have been published under the AM1.5g spectrum at standard test conditions for the EyeCon module which combines Fresnel lenses and III-V four-junction solar cells with bifacial c-Si. We investigate here its energy yield and compare it to conventional CPV as well as flat plate PV. The advantage of the hybrid CPV/PV module is that it converts direct sunlight with the most advanced multi-junction cell technology, while accessing diffuse, lens-scattered and back side irradiance with a Si cell that also serves as the heat distributor for the concentrator cells. This article quantifies that hybrid bifacial CPV/PV modules are expected to generate a 25 - 35% higher energy yield with respect to their closest competitor in regions with a diffuse irradiance fraction around 50%. Additionally, the relative cost of electricity generated by hybrid CPV/PV technology was calculated worldwide under certain economic assumptions. Therefore, this article gives clear guidance towards establishing competitive business cases for the technology.
Submission history
From: Juan Francisco Martinez Sanchez [view email][v1] Wed, 25 May 2022 15:34:25 UTC (1,986 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.