Computer Science > Computation and Language
[Submitted on 30 May 2022]
Title:Billions of Parameters Are Worth More Than In-domain Training Data: A case study in the Legal Case Entailment Task
View PDFAbstract:Recent work has shown that language models scaled to billions of parameters, such as GPT-3, perform remarkably well in zero-shot and few-shot scenarios. In this work, we experiment with zero-shot models in the legal case entailment task of the COLIEE 2022 competition. Our experiments show that scaling the number of parameters in a language model improves the F1 score of our previous zero-shot result by more than 6 points, suggesting that stronger zero-shot capability may be a characteristic of larger models, at least for this task. Our 3B-parameter zero-shot model outperforms all models, including ensembles, in the COLIEE 2021 test set and also achieves the best performance of a single model in the COLIEE 2022 competition, second only to the ensemble composed of the 3B model itself and a smaller version of the same model. Despite the challenges posed by large language models, mainly due to latency constraints in real-time applications, we provide a demonstration of our zero-shot monoT5-3b model being used in production as a search engine, including for legal documents. The code for our submission and the demo of our system are available at this https URL and this https URL, respectively.
Submission history
From: Guilherme Moraes Rosa [view email][v1] Mon, 30 May 2022 15:21:26 UTC (138 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.