Computer Science > Networking and Internet Architecture
[Submitted on 6 Jun 2022]
Title:A Continuum Approach for Collaborative Task Processing in UAV MEC Networks
View PDFAbstract:Unmanned aerial vehicles (UAVs) are becoming a viable platform for sensing and estimation in a wide variety of applications including disaster response, search and rescue, and security monitoring. These sensing UAVs have limited battery and computational capabilities, and thus must offload their data so it can be processed to provide actionable intelligence. We consider a compute platform consisting of a limited number of highly-resourced UAVs that act as mobile edge computing (MEC) servers to process the workload on premises. We propose a novel distributed solution to the collaborative processing problem that adaptively positions the MEC UAVs in response to the changing workload that arises both from the sensing UAVs' mobility and the task generation. Our solution consists of two key building blocks: (1) an efficient workload estimation process by which the UAVs estimate the task field - a continuous approximation of the number of tasks to be processed at each location in the airspace, and (2) a distributed optimization method by which the UAVs partition the task field so as to maximize the system throughput. We evaluate our proposed solution using realistic models of surveillance UAV mobility and show that our method achieves up to 28% improvement in throughput over a non-adaptive baseline approach.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.