Computer Science > Machine Learning
[Submitted on 8 Jun 2022 (v1), last revised 16 Apr 2024 (this version, v2)]
Title:Motiflets -- Simple and Accurate Detection of Motifs in Time Series
View PDF HTML (experimental)Abstract:A time series motif intuitively is a short time series that repeats itself approximately the same within a larger time series. Such motifs often represent concealed structures, such as heart beats in an ECG recording, the riff in a pop song, or sleep spindles in EEG sleep data. Motif discovery (MD) is the task of finding such motifs in a given input series. As there are varying definitions of what exactly a motif is, a number of different algorithms exist. As central parameters they all take the length l of the motif and the maximal distance r between the motif's occurrences. In practice, however, especially suitable values for r are very hard to determine upfront, and found motifs show a high variability even for very similar r values. Accordingly, finding an interesting motif requires extensive trial-and-error.
In this paper, we present a different approach to the MD problem. We define k-Motiflets as the set of exactly k occurrences of a motif of length l, whose maximum pairwise distance is minimal. This turns the MD problem upside-down: The central parameter of our approach is not the distance threshold r, but the desired number of occurrence k of the motif, which we show is considerably more intuitive and easier to set. Based on this definition, we present exact and approximate algorithms for finding k-Motiflets and analyze their complexity. To further ease the use of our method, we describe statistical tools to automatically determine meaningful values for its input parameters. By evaluation on several real-world data sets and comparison to four SotA MD algorithms, we show that our proposed algorithm is both quantitatively superior to its competitors, finding larger motif sets at higher similarity, and qualitatively better, leading to clearer and easier to interpret motifs without any need for manual tuning.
Submission history
From: Patrick Schäfer [view email][v1] Wed, 8 Jun 2022 08:22:28 UTC (2,210 KB)
[v2] Tue, 16 Apr 2024 20:38:33 UTC (2,082 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.