Electrical Engineering and Systems Science > Signal Processing
[Submitted on 13 Jun 2022]
Title:Multiband Massive IoT: A Learning Approach to Infrastructure Deployment
View PDFAbstract:We consider a novel ultra-narrowband (UNB) low-power wide-area network (LPWAN) architecture design for uplink transmission of a massive number of Internet of Things (IoT) devices over multiple multiplexing bands. An IoT device can randomly choose any of the multiplexing bands to transmit its packet. Due to hardware constraints, a base station (BS) is able to listen to only one multiplexing band. Our main objective is to maximize the packet decoding probability (PDP) by optimizing the placement of the BSs and frequency assignment of BSs to multiplexing bands. We develop two online approaches that adapt to the environment based on the statistics of (un)successful packets at the BSs. The first approach is based on a predefined model of the environment, while the second approach is measurement-based model-free approach, which is applicable to any environment. The benefit of the model-based approach is a lower training complexity, at the risk of a poor fit in a model-incompatible environment. The simulation results show that our proposed approaches to band assignment and BS placement offer significant improvement in PDP over baseline random approaches and perform closely to the theoretical upper bound.
Submission history
From: Enes Krijestorac [view email][v1] Mon, 13 Jun 2022 19:54:33 UTC (8,537 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.