Mathematics > Optimization and Control
[Submitted on 14 Jun 2022 (v1), last revised 27 Dec 2022 (this version, v3)]
Title:Riemannian stochastic approximation algorithms
View PDFAbstract:We examine a wide class of stochastic approximation algorithms for solving (stochastic) nonlinear problems on Riemannian manifolds. Such algorithms arise naturally in the study of Riemannian optimization, game theory and optimal transport, but their behavior is much less understood compared to the Euclidean case because of the lack of a global linear structure on the manifold. We overcome this difficulty by introducing a suitable Fermi coordinate frame which allows us to map the asymptotic behavior of the Riemannian Robbins-Monro (RRM) algorithms under study to that of an associated deterministic dynamical system. In so doing, we provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes, despite the significant complications that arise due to the curvature and topology of the underlying manifold. We showcase the flexibility of the proposed framework by applying it to a range of retraction-based variants of the popular optimistic / extra-gradient methods for solving minimization problems and games, and we provide a unified treatment for their convergence.
Submission history
From: Panayotis Mertikopoulos [view email][v1] Tue, 14 Jun 2022 12:30:11 UTC (696 KB)
[v2] Thu, 16 Jun 2022 12:07:47 UTC (700 KB)
[v3] Tue, 27 Dec 2022 19:07:53 UTC (559 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.