Physics > Fluid Dynamics
[Submitted on 14 Jun 2022 (v1), last revised 26 Nov 2023 (this version, v3)]
Title:Residual-based physics-informed transfer learning: A hybrid method for accelerating long-term CFD simulations via deep learning
View PDFAbstract:While a big wave of artificial intelligence (AI) has propagated to the field of computational fluid dynamics (CFD) acceleration studies, recent research has highlighted that the development of AI techniques that reconciles the following goals remains our primary task: (1) accurate prediction of unseen (future) time series in long-term CFD simulations (2) acceleration of simulations (3) an acceptable amount of training data and time (4) within a multiple PDEs condition. In this study, we propose a residual-based physics-informed transfer learning (RePIT) strategy to achieve these four objectives using ML-CFD hybrid computation. Our hypothesis is that long-term CFD simulation is feasible with the hybrid method where CFD and AI alternately calculate time series while monitoring the first principle's residuals. The feasibility of RePIT strategy was verified through a CFD case study on natural convection. In a single training approach, a residual scale change occurred around 100th timestep, resulting in predicted time series exhibiting non-physical patterns as well as a significant deviations from the ground truth. Conversely, RePIT strategy maintained the residuals within the defined range and demonstrated good accuracy throughout the entire simulation period. The maximum error from the ground truth was below 0.4 K for temperature and 0.024 m/s for x-axis velocity. Furthermore, the average time for 1 timestep by the ML-GPU and CFD-CPU calculations was 0.171 s and 0.015 s, respectively. Including the parameter-updating time, the simulation was accelerated by a factor of 1.9. In conclusion, our RePIT strategy is a promising technique to reduce the cost of CFD simulations in industry. However, more vigorous optimization and improvement studies are still necessary.
Submission history
From: Joongoo Jeon [view email][v1] Tue, 14 Jun 2022 13:11:22 UTC (1,431 KB)
[v2] Wed, 6 Sep 2023 00:50:03 UTC (2,317 KB)
[v3] Sun, 26 Nov 2023 21:59:47 UTC (2,194 KB)
Current browse context:
physics.flu-dyn
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.