Computer Science > Machine Learning
[Submitted on 17 Jun 2022]
Title:DFG-NAS: Deep and Flexible Graph Neural Architecture Search
View PDFAbstract:Graph neural networks (GNNs) have been intensively applied to various graph-based applications. Despite their success, manually designing the well-behaved GNNs requires immense human expertise. And thus it is inefficient to discover the potentially optimal data-specific GNN architecture. This paper proposes DFG-NAS, a new neural architecture search (NAS) method that enables the automatic search of very deep and flexible GNN architectures. Unlike most existing methods that focus on micro-architectures, DFG-NAS highlights another level of design: the search for macro-architectures on how atomic propagation (\textbf{\texttt{P}}) and transformation (\textbf{\texttt{T}}) operations are integrated and organized into a GNN. To this end, DFG-NAS proposes a novel search space for \textbf{\texttt{P-T}} permutations and combinations based on message-passing dis-aggregation, defines four custom-designed macro-architecture mutations, and employs the evolutionary algorithm to conduct an efficient and effective search. Empirical studies on four node classification tasks demonstrate that DFG-NAS outperforms state-of-the-art manual designs and NAS methods of GNNs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.