Computer Science > Machine Learning
[Submitted on 17 Jun 2022]
Title:Learning the parameters of a differential equation from its trajectory via the adjoint equation
View PDFAbstract:The paper contributes to strengthening the relation between machine learning and the theory of differential equations. In this context, the inverse problem of fitting the parameters, and the initial condition of a differential equation to some measurements constitutes a key issue. The paper explores an abstraction that can be used to construct a family of loss functions with the aim of fitting the solution of an initial value problem to a set of discrete or continuous measurements. It is shown, that an extension of the adjoint equation can be used to derive the gradient of the loss function as a continuous analogue of backpropagation in machine learning. Numerical evidence is presented that under reasonably controlled circumstances the gradients obtained this way can be used in a gradient descent to fit the solution of an initial value problem to a set of continuous noisy measurements, and a set of discrete noisy measurements that are recorded at uncertain times.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.