Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Jun 2022]
Title:DisCoVQA: Temporal Distortion-Content Transformers for Video Quality Assessment
View PDFAbstract:The temporal relationships between frames and their influences on video quality assessment (VQA) are still under-studied in existing works. These relationships lead to two important types of effects for video quality. Firstly, some temporal variations (such as shaking, flicker, and abrupt scene transitions) are causing temporal distortions and lead to extra quality degradations, while other variations (e.g. those related to meaningful happenings) do not. Secondly, the human visual system often has different attention to frames with different contents, resulting in their different importance to the overall video quality. Based on prominent time-series modeling ability of transformers, we propose a novel and effective transformer-based VQA method to tackle these two issues. To better differentiate temporal variations and thus capture the temporal distortions, we design a transformer-based Spatial-Temporal Distortion Extraction (STDE) module. To tackle with temporal quality attention, we propose the encoder-decoder-like temporal content transformer (TCT). We also introduce the temporal sampling on features to reduce the input length for the TCT, so as to improve the learning effectiveness and efficiency of this module. Consisting of the STDE and the TCT, the proposed Temporal Distortion-Content Transformers for Video Quality Assessment (DisCoVQA) reaches state-of-the-art performance on several VQA benchmarks without any extra pre-training datasets and up to 10% better generalization ability than existing methods. We also conduct extensive ablation experiments to prove the effectiveness of each part in our proposed model, and provide visualizations to prove that the proposed modules achieve our intention on modeling these temporal issues. We will publish our codes and pretrained weights later.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.