Computer Science > Software Engineering
[Submitted on 22 Jun 2022]
Title:Test Case Prioritization Using Partial Attention
View PDFAbstract:Test case prioritization (TCP) aims to reorder the regression test suite with a goal of increasing the fault detection rate. Various TCP techniques have been proposed based on different prioritization strategies. Among them, the greedy-based techniques are the most widely-used TCP techniques. However, existing greedy-based techniques usually reorder all candidate test cases in prioritization iterations, resulting in both efficiency and effectiveness problems. In this paper, we propose a generic partial attention mechanism, which adopts the previous priority values (i.e., the number of additionally-covered code units) to avoid considering all candidate test cases. Incorporating the mechanism with the additional-greedy strategy, we implement a novel coverage-based TCP technique based on partition ordering (OCP). OCP first groups the candidate test cases into different partitions and updates the partitions on the descending order. We conduct a comprehensive experiment on 19 versions of Java programs and 30 versions of C programs to compare the effectiveness and efficiency of OCP with six state-of-the-art TCP techniques: total-greedy, additional-greedy, lexicographical-greedy, unify-greedy, art-based, and search-based. The experimental results show that OCP achieves a better fault detection rate than the state-of-the-arts. Moreover, the time costs of OCP are found to achieve 85%-99% improvement than most state-of-the-arts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.