Computer Science > Robotics
[Submitted on 22 Jun 2022 (v1), last revised 19 Apr 2023 (this version, v3)]
Title:Vision- and tactile-based continuous multimodal intention and attention recognition for safer physical human-robot interaction
View PDFAbstract:Employing skin-like tactile sensors on robots enhances both the safety and usability of collaborative robots by adding the capability to detect human contact. Unfortunately, simple binary tactile sensors alone cannot determine the context of the human contact -- whether it is a deliberate interaction or an unintended collision that requires safety manoeuvres. Many published methods classify discrete interactions using more advanced tactile sensors or by analysing joint torques. Instead, we propose to augment the intention recognition capabilities of simple binary tactile sensors by adding a robot-mounted camera for human posture analysis. Different interaction characteristics, including touch location, human pose, and gaze direction, are used to train a supervised machine learning algorithm to classify whether a touch is intentional or not with an F1-score of 86%. We demonstrate that multimodal intention recognition is significantly more accurate than monomodal analyses with the collaborative robot Baxter. Furthermore, our method can also continuously monitor interactions that fluidly change between intentional or unintentional by gauging the user's attention through gaze. If a user stops paying attention mid-task, the proposed intention and attention recognition algorithm can activate safety features to prevent unsafe interactions. We also employ a feature reduction technique that reduces the number of inputs to five to achieve a more generalized low-dimensional classifier. This simplification both reduces the amount of training data required and improves real-world classification accuracy. It also renders the method potentially agnostic to the robot and touch sensor architectures while achieving a high degree of task adaptability.
Submission history
From: Christopher Yee Wong [view email][v1] Wed, 22 Jun 2022 19:52:46 UTC (8,004 KB)
[v2] Wed, 21 Dec 2022 00:50:03 UTC (8,632 KB)
[v3] Wed, 19 Apr 2023 13:25:37 UTC (17,850 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.