Computer Science > Cryptography and Security
[Submitted on 23 Jun 2022]
Title:MAGIC: A Method for Assessing Cyber Incidents Occurrence
View PDFAbstract:The assessment of cyber risk plays a crucial role for cybersecurity management, and has become a compulsory task for certain types of companies and organizations. This makes the demand for reliable cyber risk assessment tools continuously increasing, especially concerning quantitative tools based on statistical approaches. Probabilistic cyber risk assessment methods, however, follow the general paradigm of probabilistic risk assessment, which requires the magnitude and the likelihood of incidents as inputs. Unfortunately, for cyber incidents, the likelihood of occurrence is hard to estimate based on historical and publicly available data; so, expert evaluations are commonly used, which however leave space to subjectivity. In this paper, we propose a novel probabilistic model, called MAGIC (Method for AssessinG cyber Incidents oCcurrence), to compute the likelihood of occurrence of a cyber incident, based on the evaluation of the cyber posture of the target organization. This allows deriving tailor-made inputs for probabilistic risk assessment methods, like HTMA (How To Measure Anything in cybersecurity risk), FAIR (Factor Analysis of Information Risk) and others, thus considerably reducing the margin of subjectivity in the assessment of cyber risk. We corroborate our approach through a qualitative and a quantitative comparison with several classical methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.