Computer Science > Cryptography and Security
[Submitted on 27 Jun 2022]
Title:Libra: High-Utility Anonymization of Event Logs for Process Mining via Subsampling
View PDFAbstract:Process mining techniques enable analysts to identify and assess process improvement opportunities based on event logs. A common roadblock to process mining is that event logs may contain private information that cannot be used for analysis without consent. An approach to overcome this roadblock is to anonymize the event log so that no individual represented in the original log can be singled out based on the anonymized one. Differential privacy is an anonymization approach that provides this guarantee. A differentially private event log anonymization technique seeks to produce an anonymized log that is as similar as possible to the original one (high utility) while providing a required privacy guarantee. Existing event log anonymization techniques operate by injecting noise into the traces in the log (e.g., duplicating, perturbing, or filtering out some traces). Recent work on differential privacy has shown that a better privacy-utility tradeoff can be achieved by applying subsampling prior to noise injection. In other words, subsampling amplifies privacy. This paper proposes an event log anonymization approach called Libra that exploits this observation. Libra extracts multiple samples of traces from a log, independently injects noise, retains statistically relevant traces from each sample, and composes the samples to produce a differentially private log. An empirical evaluation shows that the proposed approach leads to a considerably higher utility for equivalent privacy guarantees relative to existing baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.