Computer Science > Computational Geometry
[Submitted on 5 Jul 2022]
Title:ParGeo: A Library for Parallel Computational Geometry
View PDFAbstract:This paper presents ParGeo, a multicore library for computational geometry. ParGeo contains modules for fundamental tasks including $k$d-tree based spatial search, spatial graph generation, and algorithms in computational geometry.
We focus on three new algorithmic contributions provided in the library. First, we present a new parallel convex hull algorithm based on a reservation technique to enable parallel modifications to the hull. We also provide the first parallel implementations of the randomized incremental convex hull algorithm as well as a divide-and-conquer convex hull algorithm in $\mathbb{R}^3$. Second, for the smallest enclosing ball problem, we propose a new sampling-based algorithm to quickly reduce the size of the data set. We also provide the first parallel implementation of Welzl's classic algorithm for smallest enclosing ball. Third, we present the BDL-tree, a parallel batch-dynamic $k$d-tree that allows for efficient parallel updates and $k$-NN queries over dynamically changing point sets. BDL-trees consist of a log-structured set of $k$d-trees which can be used to efficiently insert, delete, and query batches of points in parallel.
On 36 cores with two-way hyper-threading, our fastest convex hull algorithm achieves up to 44.7x self-relative parallel speedup and up to 559x speedup against the best existing sequential implementation. Our smallest enclosing ball algorithm using our sampling-based algorithm achieves up to 27.1x self-relative parallel speedup and up to 178x speedup against the best existing sequential implementation. Our implementation of the BDL-tree achieves self-relative parallel speedup of up to 46.1x. Across all of the algorithms in ParGeo, we achieve self-relative parallel speedup of 8.1--46.61x.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.