Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Jul 2022 (v1), last revised 4 Aug 2023 (this version, v2)]
Title:SFNet: Faster and Accurate Semantic Segmentation via Semantic Flow
View PDFAbstract:In this paper, we focus on exploring effective methods for faster and accurate semantic segmentation. A common practice to improve the performance is to attain high-resolution feature maps with strong semantic representation. Two strategies are widely used: atrous convolutions and feature pyramid fusion, while both are either computationally intensive or ineffective. Inspired by the Optical Flow for motion alignment between adjacent video frames, we propose a Flow Alignment Module (FAM) to learn \textit{Semantic Flow} between feature maps of adjacent levels and broadcast high-level features to high-resolution features effectively and efficiently. Furthermore, integrating our FAM to a standard feature pyramid structure exhibits superior performance over other real-time methods, even on lightweight backbone networks, such as ResNet-18 and DFNet. Then to further speed up the inference procedure, we also present a novel Gated Dual Flow Alignment Module to directly align high-resolution feature maps and low-resolution feature maps where we term the improved version network as SFNet-Lite. Extensive experiments are conducted on several challenging datasets, where results show the effectiveness of both SFNet and SFNet-Lite. In particular, when using Cityscapes test set, the SFNet-Lite series achieve 80.1 mIoU while running at 60 FPS using ResNet-18 backbone and 78.8 mIoU while running at 120 FPS using STDC backbone on RTX-3090. Moreover, we unify four challenging driving datasets into one large dataset, which we named Unified Driving Segmentation (UDS) dataset. It contains diverse domain and style information. We benchmark several representative works on UDS. Both SFNet and SFNet-Lite still achieve the best speed and accuracy trade-off on UDS, which serves as a strong baseline in such a challenging setting. The code and models are publicly available at this https URL.
Submission history
From: Xiangtai Li [view email][v1] Sun, 10 Jul 2022 08:25:47 UTC (5,233 KB)
[v2] Fri, 4 Aug 2023 09:00:27 UTC (5,271 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.