Computer Science > Machine Learning
[Submitted on 11 Jul 2022]
Title:A Federated Cox Model with Non-Proportional Hazards
View PDFAbstract:Recent research has shown the potential for neural networks to improve upon classical survival models such as the Cox model, which is widely used in clinical practice. Neural networks, however, typically rely on data that are centrally available, whereas healthcare data are frequently held in secure silos. We present a federated Cox model that accommodates this data setting and also relaxes the proportional hazards assumption, allowing time-varying covariate effects. In this latter respect, our model does not require explicit specification of the time-varying effects, reducing upfront organisational costs compared to previous works. We experiment with publicly available clinical datasets and demonstrate that the federated model is able to perform as well as a standard model.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.