Computer Science > Artificial Intelligence
[Submitted on 18 Jul 2022]
Title:PBRE: A Rule Extraction Method from Trained Neural Networks Designed for Smart Home Services
View PDFAbstract:Designing smart home services is a complex task when multiple services with a large number of sensors and actuators are deployed simultaneously. It may rely on knowledge-based or data-driven approaches. The former can use rule-based methods to design services statically, and the latter can use learning methods to discover inhabitants' preferences dynamically. However, neither of these approaches is entirely satisfactory because rules cannot cover all possible situations that may change, and learning methods may make decisions that are sometimes incomprehensible to the inhabitant. In this paper, PBRE (Pedagogic Based Rule Extractor) is proposed to extract rules from learning methods to realize dynamic rule generation for smart home systems. The expected advantage is that both the explainability of rule-based methods and the dynamicity of learning methods are adopted. We compare PBRE with an existing rule extraction method, and the results show better performance of PBRE. We also apply PBRE to extract rules from a smart home service represented by an NRL (Neural Network-based Reinforcement Learning). The results show that PBRE can help the NRL-simulated service to make understandable suggestions to the inhabitant.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.