Computer Science > Data Structures and Algorithms
[Submitted on 19 Jul 2022]
Title:On Regularity Lemma and Barriers in Streaming and Dynamic Matching
View PDFAbstract:We present a new approach for finding matchings in dense graphs by building on Szemerédi's celebrated Regularity Lemma. This allows us to obtain non-trivial albeit slight improvements over longstanding bounds for matchings in streaming and dynamic graphs. In particular, we establish the following results for $n$-vertex graphs:
* A deterministic single-pass streaming algorithm that finds
a $(1-o(1))$-approximate matching in $o(n^2)$ bits of space. This constitutes the first single-pass algorithm for this problem in sublinear space that improves over the $\frac{1}{2}$-approximation of the greedy algorithm.
* A randomized fully dynamic algorithm that with high probability maintains a $(1-o(1))$-approximate matching in $o(n)$ worst-case update time per each edge insertion or deletion. The algorithm works even against an adaptive adversary. This is the first $o(n)$ update-time dynamic algorithm with approximation guarantee arbitrarily close to one.
Given the use of regularity lemma, the improvement obtained by our algorithms over trivial bounds is only by some $(\log^*{n})^{\Theta(1)}$ factor. Nevertheless, in each case, they show that the ``right'' answer to the problem is not what is dictated by the previous bounds.
Finally, in the streaming model, we also present a randomized $(1-o(1))$-approximation algorithm whose space can be upper bounded by the density of certain Ruzsa-Szemerédi (RS) graphs. While RS graphs by now have been used extensively to prove streaming lower bounds, ours is the first to use them as an upper bound tool for designing improved streaming algorithms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.