Mathematics > Numerical Analysis
[Submitted on 20 Jul 2022]
Title:Convergence of the fully discrete incremental projection scheme for incompressible flows
View PDFAbstract:The present paper addresses the convergence of a first order in time incremental projection scheme for the time-dependent incompressible Navier-Stokes equations to a weak solution, without any assumption of existence or regularity assumptions on the exact solution. We prove the convergence of the approximate solutions obtained by the semi-discrete scheme and a fully discrete scheme using a staggered finite volume scheme on non uniform rectangular meshes. Some first a priori estimates on the approximate solutions yield the existence. Compactness arguments, relying on these estimates, together with some estimates on the translates of the discrete time derivatives, are then developed to obtain convergence (up to the extraction of a subsequence), when the time step tends to zero in the semi-discrete scheme and when the space and time steps tend to zero in the fully discrete scheme; the approximate solutions are thus shown to converge to a limit function which is then shown to be a weak solution to the continuous problem by passing to the limit in these schemes.
Submission history
From: Raphaele Herbin [view email] [via CCSD proxy][v1] Wed, 20 Jul 2022 06:52:11 UTC (29 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.