Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Jul 2022 (v1), last revised 10 Sep 2023 (this version, v2)]
Title:Self-supervised contrastive learning of echocardiogram videos enables label-efficient cardiac disease diagnosis
View PDFAbstract:Advances in self-supervised learning (SSL) have shown that self-supervised pretraining on medical imaging data can provide a strong initialization for downstream supervised classification and segmentation. Given the difficulty of obtaining expert labels for medical image recognition tasks, such an "in-domain" SSL initialization is often desirable due to its improved label efficiency over standard transfer learning. However, most efforts toward SSL of medical imaging data are not adapted to video-based medical imaging modalities. With this progress in mind, we developed a self-supervised contrastive learning approach, EchoCLR, catered to echocardiogram videos with the goal of learning strong representations for efficient fine-tuning on downstream cardiac disease diagnosis. EchoCLR leverages (i) distinct videos of the same patient as positive pairs for contrastive learning and (ii) a frame re-ordering pretext task to enforce temporal coherence. When fine-tuned on small portions of labeled data (as few as 51 exams), EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS) over other transfer learning and SSL approaches across internal and external test sets. For example, when fine-tuning on 10% of available training data (519 studies), an EchoCLR-pretrained model achieved 0.72 AUROC (95% CI: [0.69, 0.75]) on LVH classification, compared to 0.61 AUROC (95% CI: [0.57, 0.64]) with a standard transfer learning approach. Similarly, using 1% of available training data (53 studies), EchoCLR pretraining achieved 0.82 AUROC (95% CI: [0.79, 0.84]) on severe AS classification, compared to 0.61 AUROC (95% CI: [0.58, 0.65]) with transfer learning. EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
Submission history
From: Gregory Holste [view email][v1] Sat, 23 Jul 2022 19:17:26 UTC (1,935 KB)
[v2] Sun, 10 Sep 2023 22:45:59 UTC (3,436 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.