Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Jul 2022]
Title:Improving Test-Time Adaptation via Shift-agnostic Weight Regularization and Nearest Source Prototypes
View PDFAbstract:This paper proposes a novel test-time adaptation strategy that adjusts the model pre-trained on the source domain using only unlabeled online data from the target domain to alleviate the performance degradation due to the distribution shift between the source and target domains. Adapting the entire model parameters using the unlabeled online data may be detrimental due to the erroneous signals from an unsupervised objective. To mitigate this problem, we propose a shift-agnostic weight regularization that encourages largely updating the model parameters sensitive to distribution shift while slightly updating those insensitive to the shift, during test-time adaptation. This regularization enables the model to quickly adapt to the target domain without performance degradation by utilizing the benefit of a high learning rate. In addition, we present an auxiliary task based on nearest source prototypes to align the source and target features, which helps reduce the distribution shift and leads to further performance improvement. We show that our method exhibits state-of-the-art performance on various standard benchmarks and even outperforms its supervised counterpart.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.