Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Jul 2022]
Title:Weakly-Supervised Temporal Action Detection for Fine-Grained Videos with Hierarchical Atomic Actions
View PDFAbstract:Action understanding has evolved into the era of fine granularity, as most human behaviors in real life have only minor differences. To detect these fine-grained actions accurately in a label-efficient way, we tackle the problem of weakly-supervised fine-grained temporal action detection in videos for the first time. Without the careful design to capture subtle differences between fine-grained actions, previous weakly-supervised models for general action detection cannot perform well in the fine-grained setting. We propose to model actions as the combinations of reusable atomic actions which are automatically discovered from data through self-supervised clustering, in order to capture the commonality and individuality of fine-grained actions. The learnt atomic actions, represented by visual concepts, are further mapped to fine and coarse action labels leveraging the semantic label hierarchy. Our approach constructs a visual representation hierarchy of four levels: clip level, atomic action level, fine action class level and coarse action class level, with supervision at each level. Extensive experiments on two large-scale fine-grained video datasets, FineAction and FineGym, show the benefit of our proposed weakly-supervised model for fine-grained action detection, and it achieves state-of-the-art results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.