Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Jul 2022]
Title:ALTO: A Large-Scale Dataset for UAV Visual Place Recognition and Localization
View PDFAbstract:We present the ALTO dataset, a vision-focused dataset for the development and benchmarking of Visual Place Recognition and Localization methods for Unmanned Aerial Vehicles. The dataset is composed of two long (approximately 150km and 260km) trajectories flown by a helicopter over Ohio and Pennsylvania, and it includes high precision GPS-INS ground truth location data, high precision accelerometer readings, laser altimeter readings, and RGB downward facing camera imagery. In addition, we provide reference imagery over the flight paths, which makes this dataset suitable for VPR benchmarking and other tasks common in Localization, such as image registration and visual odometry. To the author's knowledge, this is the largest real-world aerial-vehicle dataset of this kind. Our dataset is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.