Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Jul 2022]
Title:Using Deep Learning to Detecting Deepfakes
View PDFAbstract:In the recent years, social media has grown to become a major source of information for many online users. This has given rise to the spread of misinformation through deepfakes. Deepfakes are videos or images that replace one persons face with another computer-generated face, often a more recognizable person in society. With the recent advances in technology, a person with little technological experience can generate these videos. This enables them to mimic a power figure in society, such as a president or celebrity, creating the potential danger of spreading misinformation and other nefarious uses of deepfakes. To combat this online threat, researchers have developed models that are designed to detect deepfakes. This study looks at various deepfake detection models that use deep learning algorithms to combat this looming threat. This survey focuses on providing a comprehensive overview of the current state of deepfake detection models and the unique approaches many researchers take to solving this problem. The benefits, limitations, and suggestions for future work will be thoroughly discussed throughout this paper.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.