Computer Science > Discrete Mathematics
[Submitted on 2 Aug 2022 (v1), last revised 30 Aug 2024 (this version, v4)]
Title:Simple, strict, proper, happy: A study of reachability in temporal graphs
View PDF HTML (experimental)Abstract:Dynamic networks are a complex subject. Not only do they inherit the complexity of static networks (as a particular case); they are also sensitive to definitional subtleties that are a frequent source of confusion and incomparability of results in the literature.
In this paper, we take a step back and examine three such aspects in more details, exploring their impact in a systematic way; namely, whether the temporal paths are required to be \emph{strict} (i.e., the times along a path must increasing, not just be non-decreasing), whether the time labeling is \emph{proper} (two adjacent edges cannot be present at the same time) and whether the time labeling is \emph{simple} (an edge can have only one presence time). In particular, we investigate how different combinations of these features impact the expressivity of the graph in terms of reachability.
Our results imply a hierarchy of expressivity for the resulting settings, shedding light on the loss of generality that one is making when considering either combination. Some settings are more general than expected; in particular, proper temporal graphs turn out to be as expressive as general temporal graphs where non-strict paths are allowed. Also, we show that the simplest setting, that of \emph{happy} temporal graphs (i.e., both proper and simple) remains expressive enough to emulate the reachability of general temporal graphs in a certain (restricted but useful) sense. Furthermore, this setting is advocated as a target of choice for proving negative results. We illustrates this by strengthening two known results to happy graphs (namely, the inexistence of sparse spanners, and the hardness of computing temporal components). Overall, we hope that this article can be seen as a guide for choosing between different settings of temporal graphs, while being aware of the way these choices affect generality.
Submission history
From: Timothée Corsini [view email][v1] Tue, 2 Aug 2022 20:07:38 UTC (33 KB)
[v2] Mon, 8 Aug 2022 14:09:27 UTC (33 KB)
[v3] Fri, 15 Dec 2023 17:35:07 UTC (34 KB)
[v4] Fri, 30 Aug 2024 14:18:45 UTC (34 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.