Computer Science > Information Retrieval
[Submitted on 9 Aug 2022]
Title:Unsupervised Question Clarity Prediction Through Retrieved Item Coherency
View PDFAbstract:Despite recent progress on conversational systems, they still do not perform smoothly and coherently when faced with ambiguous requests. When questions are unclear, conversational systems should have the ability to ask clarifying questions, rather than assuming a particular interpretation or simply responding that they do not understand. Previous studies have shown that users are more satisfied when asked a clarifying question, rather than receiving an unrelated response. While the research community has paid substantial attention to the problem of predicting query ambiguity in traditional search contexts, researchers have paid relatively little attention to predicting when this ambiguity is sufficient to warrant clarification in the context of conversational systems. In this paper, we propose an unsupervised method for predicting the need for clarification. This method is based on the measured coherency of results from an initial answer retrieval step, under the assumption that a less ambiguous query is more likely to retrieve more coherent results when compared to an ambiguous query. We build a graph from retrieved items based on their context similarity, treating measures of graph connectivity as indicators of ambiguity. We evaluate our approach on two recently released open-domain conversational question answering datasets, ClariQ and AmbigNQ, comparing it with neural and non-neural baselines. Our unsupervised approach performs as well as supervised approaches while providing better generalization.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.