Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Aug 2022]
Title:DS-MVSNet: Unsupervised Multi-view Stereo via Depth Synthesis
View PDFAbstract:In recent years, supervised or unsupervised learning-based MVS methods achieved excellent performance compared with traditional methods. However, these methods only use the probability volume computed by cost volume regularization to predict reference depths and this manner cannot mine enough information from the probability volume. Furthermore, the unsupervised methods usually try to use two-step or additional inputs for training which make the procedure more complicated. In this paper, we propose the DS-MVSNet, an end-to-end unsupervised MVS structure with the source depths synthesis. To mine the information in probability volume, we creatively synthesize the source depths by splattering the probability volume and depth hypotheses to source views. Meanwhile, we propose the adaptive Gaussian sampling and improved adaptive bins sampling approach that improve the depths hypotheses accuracy. On the other hand, we utilize the source depths to render the reference images and propose depth consistency loss and depth smoothness loss. These can provide additional guidance according to photometric and geometric consistency in different views without additional inputs. Finally, we conduct a series of experiments on the DTU dataset and Tanks & Temples dataset that demonstrate the efficiency and robustness of our DS-MVSNet compared with the state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.