Computer Science > Programming Languages
[Submitted on 15 Aug 2022]
Title:Invariant Inference With Provable Complexity From the Monotone Theory
View PDFAbstract:Invariant inference algorithms such as interpolation-based inference and IC3/PDR show that it is feasible, in practice, to find inductive invariants for many interesting systems, but non-trivial upper bounds on the computational complexity of such algorithms are scarce, and limited to simple syntactic forms of invariants. In this paper we achieve invariant inference algorithms, in the domain of propositional transition systems, with provable upper bounds on the number of SAT calls. We do this by building on the monotone theory, developed by Bshouty for exact learning Boolean formulas. We prove results for two invariant inference frameworks: (i) model-based interpolation, where we show an algorithm that, under certain conditions about reachability, efficiently infers invariants when they have both short CNF and DNF representations (transcending previous results about monotone invariants); and (ii) abstract interpretation in a domain based on the monotone theory that was previously studied in relation to property-directed reachability, where we propose an efficient implementation of the best abstract transformer, leading to overall complexity bounds on the number of SAT calls. These results build on a novel procedure for computing least monotone overapproximations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.