Computer Science > Computation and Language
[Submitted on 17 Aug 2022]
Title:On the evolution of research in hypersonics: application of natural language processing and machine learning
View PDFAbstract:Research and development in hypersonics have progressed significantly in recent years, with various military and commercial applications being demonstrated increasingly. Public and private organizations in several countries have been investing in hypersonics, with the aim to overtake their competitors and secure/improve strategic advantage and deterrence. For these organizations, being able to identify emerging technologies in a timely and reliable manner is paramount. Recent advances in information technology have made it possible to analyze large amounts of data, extract hidden patterns, and provide decision-makers with new insights. In this study, we focus on scientific publications about hypersonics within the period of 2000-2020, and employ natural language processing and machine learning to characterize the research landscape by identifying 12 key latent research themes and analyzing their temporal evolution. Our publication similarity analysis revealed patterns that are indicative of cycles during two decades of research. The study offers a comprehensive analysis of the research field and the fact that the research themes are algorithmically extracted removes subjectivity from the exercise and enables consistent comparisons between topics and between time intervals.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.