Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Aug 2022 (v1), last revised 19 Jan 2024 (this version, v3)]
Title:Hierarchical Compositional Representations for Few-shot Action Recognition
View PDF HTML (experimental)Abstract:Recently action recognition has received more and more attention for its comprehensive and practical applications in intelligent surveillance and human-computer interaction. However, few-shot action recognition has not been well explored and remains challenging because of data scarcity. In this paper, we propose a novel hierarchical compositional representations (HCR) learning approach for few-shot action recognition. Specifically, we divide a complicated action into several sub-actions by carefully designed hierarchical clustering and further decompose the sub-actions into more fine-grained spatially attentional sub-actions (SAS-actions). Although there exist large differences between base classes and novel classes, they can share similar patterns in sub-actions or SAS-actions. Furthermore, we adopt the Earth Mover's Distance in the transportation problem to measure the similarity between video samples in terms of sub-action representations. It computes the optimal matching flows between sub-actions as distance metric, which is favorable for comparing fine-grained patterns. Extensive experiments show our method achieves the state-of-the-art results on HMDB51, UCF101 and Kinetics datasets.
Submission history
From: Changzhen Li [view email][v1] Fri, 19 Aug 2022 16:16:59 UTC (4,672 KB)
[v2] Fri, 19 May 2023 02:46:57 UTC (4,863 KB)
[v3] Fri, 19 Jan 2024 05:32:54 UTC (4,860 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.