Computer Science > Computation and Language
[Submitted on 28 Aug 2022]
Title:Bayesian Neural Network Language Modeling for Speech Recognition
View PDFAbstract:State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex. They are prone to overfitting and poor generalization when given limited training data. To this end, an overarching full Bayesian learning framework encompassing three methods is proposed in this paper to account for the underlying uncertainty in LSTM-RNN and Transformer LMs. The uncertainty over their model parameters, choice of neural activations and hidden output representations are modeled using Bayesian, Gaussian Process and variational LSTM-RNN or Transformer LMs respectively. Efficient inference approaches were used to automatically select the optimal network internal components to be Bayesian learned using neural architecture search. A minimal number of Monte Carlo parameter samples as low as one was also used. These allow the computational costs incurred in Bayesian NNLM training and evaluation to be minimized. Experiments are conducted on two tasks: AMI meeting transcription and Oxford-BBC LipReading Sentences 2 (LRS2) overlapped speech recognition using state-of-the-art LF-MMI trained factored TDNN systems featuring data augmentation, speaker adaptation and audio-visual multi-channel beamforming for overlapped speech. Consistent performance improvements over the baseline LSTM-RNN and Transformer LMs with point estimated model parameters and drop-out regularization were obtained across both tasks in terms of perplexity and word error rate (WER). In particular, on the LRS2 data, statistically significant WER reductions up to 1.3% and 1.2% absolute (12.1% and 11.3% relative) were obtained over the baseline LSTM-RNN and Transformer LMs respectively after model combination between Bayesian NNLMs and their respective baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.