Computer Science > Robotics
[Submitted on 8 Sep 2022 (v1), last revised 12 Sep 2022 (this version, v2)]
Title:A Study of Shared-Control with Force Feedback for Obstacle Avoidance in Whole-body Telelocomotion of a Wheeled Humanoid
View PDFAbstract:Teleoperation has emerged as an alternative solution to fully-autonomous systems for achieving human-level capabilities on humanoids. Specifically, teleoperation with whole-body control is a promising hands-free strategy to command humanoids but demands more physical and mental effort. To mitigate this limitation, researchers have proposed shared-control methods incorporating robot decision-making to aid humans on low-level tasks, further reducing operation effort. However, shared-control methods for wheeled humanoid telelocomotion on a whole-body level has yet to be explored. In this work, we study how whole-body feedback affects the performance of different shared-control methods for obstacle avoidance in diverse environments. A Time-Derivative Sigmoid Function (TDSF) is proposed to generate more intuitive force feedback from obstacles. Comprehensive human experiments were conducted, and the results concluded that force feedback enhances the whole-body telelocomotion performance in unfamiliar environments but could reduce performance in familiar environments. Conveying the robot's intention through haptics showed further improvements since the operator can utilize the force feedback for short-distance planning and visual feedback for long-distance planning.
Submission history
From: Donghoon Baek [view email][v1] Thu, 8 Sep 2022 18:28:44 UTC (5,346 KB)
[v2] Mon, 12 Sep 2022 01:45:26 UTC (5,124 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.