Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 13 Sep 2022]
Title:Towards Efficient Architecture and Algorithms for Sensor Fusion
View PDFAbstract:The safety of an automated vehicle hinges crucially upon the accuracy of perception and decision-making latency. Under these stringent requirements, future automated cars are usually equipped with multi-modal sensors such as cameras and LiDARs. The sensor fusion is adopted to provide a confident context of driving scenarios for better decision-making. A promising sensor fusion technique is middle fusion that combines the feature representations from intermediate layers that belong to different sensing modalities. However, achieving both the accuracy and latency efficiency is challenging for middle fusion, which is critical for driving automation applications. We present A3Fusion, a software-hardware system specialized for an adaptive, agile, and aligned fusion in driving automation. A3Fusion achieves a high efficiency for the middle fusion of multiple CNN-based modalities by proposing an adaptive multi-modal learning network architecture and a latency-aware, agile network architecture optimization algorithm that enhances semantic segmentation accuracy while taking the inference latency as a key trade-off. In addition, A3Fusion proposes a FPGA-based accelerator that captures unique data flow patterns of our middle fusion algorithm while reducing the overall compute overheads. We enable these contributions by co-designing the neural network, algorithm, and the accelerator architecture.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.