Electrical Engineering and Systems Science > Systems and Control
[Submitted on 14 Sep 2022 (v1), last revised 12 Feb 2025 (this version, v3)]
Title:Falsification of Cyber-Physical Systems using Bayesian Optimization
View PDF HTML (experimental)Abstract:Cyber-physical systems (CPSs) are often complex and safety-critical, making it both challenging and crucial to ensure that the system's specifications are met. Simulation-based falsification is a practical testing technique for increasing confidence in a CPS's correctness, as it only requires that the system be simulated. Reducing the number of computationally intensive simulations needed for falsification is a key concern. In this study, we investigate Bayesian optimization (BO), a sample-efficient approach that learns a surrogate model to capture the relationship between input signal parameterization and specification evaluation. We propose two enhancements to the basic BO for improving falsification: (1) leveraging local surrogate models, and (2) utilizing the user's prior knowledge. Additionally, we address the formulation of acquisition functions for falsification by proposing and evaluating various alternatives. Our benchmark evaluation demonstrates significant improvements when using local surrogate models in BO for falsifying challenging benchmark examples. Incorporating prior knowledge is found to be especially beneficial when the simulation budget is constrained. For some benchmark problems, the choice of acquisition function noticeably impacts the number of simulations required for successful falsification.
Submission history
From: Zahra Ramezani [view email][v1] Wed, 14 Sep 2022 15:52:19 UTC (2,424 KB)
[v2] Sun, 12 Feb 2023 20:06:43 UTC (2,426 KB)
[v3] Wed, 12 Feb 2025 09:32:17 UTC (2,428 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.