Computer Science > Software Engineering
[Submitted on 22 Sep 2022]
Title:Answer Summarization for Technical Queries: Benchmark and New Approach
View PDFAbstract:Prior studies have demonstrated that approaches to generate an answer summary for a given technical query in Software Question and Answer (SQA) sites are desired. We find that existing approaches are assessed solely through user studies. There is a need for a benchmark with ground truth summaries to complement assessment through user studies. Unfortunately, such a benchmark is non-existent for answer summarization for technical queries from SQA sites. To fill the gap, we manually construct a high-quality benchmark to enable automatic evaluation of answer summarization for technical queries for SQA sites. Using the benchmark, we comprehensively evaluate the performance of existing approaches and find that there is still a big room for improvement.
Motivated by the results, we propose a new approach TechSumBot with three key modules:1) Usefulness Ranking module, 2) Centrality Estimation module, and 3) Redundancy Removal module. We evaluate TechSumBot in both automatic (i.e., using our benchmark) and manual (i.e., via a user study) manners. The results from both evaluations consistently demonstrate that TechSumBot outperforms the best performing baseline approaches from both SE and NLP domains by a large margin, i.e., 10.83%-14.90%, 32.75%-36.59%, and 12.61%-17.54%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L on automatic evaluation, and 5.79%-9.23% and 17.03%-17.68%, in terms of average usefulness and diversity score on human evaluation. This highlights that the automatic evaluation of our benchmark can uncover findings similar to the ones found through user studies. More importantly, automatic evaluation has a much lower cost, especially when it is used to assess a new approach. Additionally, we also conducted an ablation study, which demonstrates that each module in TechSumBot contributes to boosting the overall performance of TechSumBot.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.