Computer Science > Artificial Intelligence
[Submitted on 23 Sep 2022]
Title:involve-MI: Informative Planning with High-Dimensional Non-Parametric Beliefs
View PDFAbstract:One of the most complex tasks of decision making and planning is to gather information. This task becomes even more complex when the state is high-dimensional and its belief cannot be expressed with a parametric distribution. Although the state is high-dimensional, in many problems only a small fraction of it might be involved in transitioning the state and generating observations. We exploit this fact to calculate an information-theoretic expected reward, mutual information (MI), over a much lower-dimensional subset of the state, to improve efficiency and without sacrificing accuracy. A similar approach was used in previous works, yet specifically for Gaussian distributions, and we here extend it for general distributions. Moreover, we apply the dimensionality reduction for cases in which the new states are augmented to the previous, yet again without sacrificing accuracy. We then continue by developing an estimator for the MI which works in a Sequential Monte Carlo (SMC) manner, and avoids the reconstruction of future belief's surfaces. Finally, we show how this work is applied to the informative planning optimization problem. This work is then evaluated in a simulation of an active SLAM problem, where the improvement in both accuracy and timing is demonstrated.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.