Computer Science > Information Theory
[Submitted on 26 Sep 2022]
Title:MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff
View PDFAbstract:This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We consider both the point and extended target models. For the point target case, the BS estimates the target angle and we adopt the Cramér-Rao bound (CRB) for angle estimation as the sensing performance metric. For the extended target case, the BS estimates the complete target response matrix, and we consider three different sensing performance metrics including the trace, the maximum eigenvalue, and the determinant of the CRB matrix for target response matrix estimation. For each of the four scenarios with different CRB measures, we investigate the fundamental tradeoff between the CRB for estimation and the data rate for communication, by characterizing the Pareto boundary of the achievable CRB-rate (C-R) region. In particular, we formulate a new MIMO rate maximization problem for each scenario, by optimizing the transmit covariance matrix at the BS, subject to a different form of maximum CRB constraint and its maximum transmit power constraint. For these problems, we obtain their optimal solutions in semi-closed forms by using advanced convex optimization techniques. For the point target case, the optimal solution is obtained by diagonalizing a \emph{composite channel matrix} via singular value decomposition (SVD) together with water-filling-like power allocation over these decomposed subchannels. For the three scenarios in the extended target case, the optimal solutions are obtained by diagonalizing the \emph{communication channel} via SVD, together with proper power allocation over two orthogonal sets of subchannels. Numerical results are conducted to validate the proposed design.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.