Computer Science > Machine Learning
[Submitted on 27 Sep 2022]
Title:Defining and Characterizing Reward Hacking
View PDFAbstract:We provide the first formal definition of reward hacking, a phenomenon where optimizing an imperfect proxy reward function, $\mathcal{\tilde{R}}$, leads to poor performance according to the true reward function, $\mathcal{R}$. We say that a proxy is unhackable if increasing the expected proxy return can never decrease the expected true return. Intuitively, it might be possible to create an unhackable proxy by leaving some terms out of the reward function (making it "narrower") or overlooking fine-grained distinctions between roughly equivalent outcomes, but we show this is usually not the case. A key insight is that the linearity of reward (in state-action visit counts) makes unhackability a very strong condition. In particular, for the set of all stochastic policies, two reward functions can only be unhackable if one of them is constant. We thus turn our attention to deterministic policies and finite sets of stochastic policies, where non-trivial unhackable pairs always exist, and establish necessary and sufficient conditions for the existence of simplifications, an important special case of unhackability. Our results reveal a tension between using reward functions to specify narrow tasks and aligning AI systems with human values.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.