Computer Science > Machine Learning
[Submitted on 28 Sep 2022 (v1), last revised 2 Aug 2023 (this version, v3)]
Title:Graph Soft-Contrastive Learning via Neighborhood Ranking
View PDFAbstract:Graph Contrastive Learning (GCL) has emerged as a promising approach in the realm of graph self-supervised learning. Prevailing GCL methods mainly derive from the principles of contrastive learning in the field of computer vision: modeling invariance by specifying absolutely similar pairs. However, when applied to graph data, this paradigm encounters two significant limitations: (1) the validity of the generated views cannot be guaranteed: graph perturbation may produce invalid views against semantics and intrinsic topology of graph data; (2) specifying absolutely similar pairs in the graph views is unreliable: for abstract and non-Euclidean graph data, it is difficult for humans to decide the absolute similarity and dissimilarity intuitively. Despite the notable performance of current GCL methods, these challenges necessitate a reevaluation: Could GCL be more effectively tailored to the intrinsic properties of graphs, rather than merely adopting principles from computer vision? In response to this query, we propose a novel paradigm, Graph Soft-Contrastive Learning (GSCL). This approach facilitates GCL via neighborhood ranking, avoiding the need to specify absolutely similar pairs. GSCL leverages the underlying graph characteristic of diminishing label consistency, asserting that nodes that are closer in the graph are overall more similar than far-distant nodes. Within the GSCL framework, we introduce pairwise and listwise gated ranking InfoNCE loss functions to effectively preserve the relative similarity ranking within neighborhoods. Moreover, as the neighborhood size exponentially expands with more hops considered, we propose neighborhood sampling strategies to improve learning efficiency. Our extensive empirical results across 11 commonly used graph datasets-including 8 homophily graphs and 3 heterophily graphs-demonstrate GSCL's superior performance compared to 20 SOTA GCL methods.
Submission history
From: Zhiyuan Ning [view email][v1] Wed, 28 Sep 2022 09:52:15 UTC (4,585 KB)
[v2] Sun, 16 Oct 2022 19:31:59 UTC (4,948 KB)
[v3] Wed, 2 Aug 2023 12:43:19 UTC (1,285 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.