Computer Science > Graphics
[Submitted on 30 Sep 2022 (v1), last revised 30 Apr 2023 (this version, v3)]
Title:Point normal orientation and surface reconstruction by incorporating isovalue constraints to Poisson equation
View PDFAbstract:Oriented normals are common pre-requisites for many geometric algorithms based on point clouds, such as Poisson surface reconstruction. However, it is not trivial to obtain a consistent orientation. In this work, we bridge orientation and reconstruction in the implicit space and propose a novel approach to orient point cloud normals by incorporating isovalue constraints to the Poisson equation. In implicit surface reconstruction, the reconstructed shape is represented as an isosurface of an implicit function defined in the ambient space. Therefore, when such a surface is reconstructed from a set of sample points, the implicit function values at the points should be close to the isovalue corresponding to the surface. Based on this observation and the Poisson equation, we propose an optimization formulation that combines isovalue constraints with local consistency requirements for normals. We optimize normals and implicit functions simultaneously and solve for a globally consistent orientation. Thanks to the sparsity of the linear system, our method can work on an average laptop with reasonable computational time. Experiments show that our method can achieve high performance in non-uniform and noisy data and manage varying sampling densities, artifacts, multiple connected components, and nested surfaces. The source code is available at \url{this https URL}.
Submission history
From: Dong Xiao [view email][v1] Fri, 30 Sep 2022 17:47:48 UTC (5,284 KB)
[v2] Sat, 24 Dec 2022 18:34:10 UTC (6,116 KB)
[v3] Sun, 30 Apr 2023 14:01:45 UTC (7,558 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.