Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Oct 2022]
Title:NAS-based Recursive Stage Partial Network (RSPNet) for Light-Weight Semantic Segmentation
View PDFAbstract:Current NAS-based semantic segmentation methods focus on accuracy improvements rather than light-weight design. In this paper, we proposed a two-stage framework to design our NAS-based RSPNet model for light-weight semantic segmentation. The first architecture search determines the inner cell structure, and the second architecture search considers exponentially growing paths to finalize the outer structure of the network. It was shown in the literature that the fusion of high- and low-resolution feature maps produces stronger representations. To find the expected macro structure without manual design, we adopt a new path-attention mechanism to efficiently search for suitable paths to fuse useful information for better segmentation. Our search for repeatable micro-structures from cells leads to a superior network architecture in semantic segmentation. In addition, we propose an RSP (recursive Stage Partial) architecture to search a light-weight design for NAS-based semantic segmentation. The proposed architecture is very efficient, simple, and effective that both the macro- and micro- structure searches can be completed in five days of computation on two V100 GPUs. The light-weight NAS architecture with only 1/4 parameter size of SoTA architectures can achieve SoTA performance on semantic segmentation on the Cityscapes dataset without using any backbones.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.