Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 4 Oct 2022 (v1), last revised 13 Oct 2022 (this version, v2)]
Title:Shielding Federated Learning: Mitigating Byzantine Attacks with Less Constraints
View PDFAbstract:Federated learning is a newly emerging distributed learning framework that facilitates the collaborative training of a shared global model among distributed participants with their privacy preserved. However, federated learning systems are vulnerable to Byzantine attacks from malicious participants, who can upload carefully crafted local model updates to degrade the quality of the global model and even leave a backdoor. While this problem has received significant attention recently, current defensive schemes heavily rely on various assumptions, such as a fixed Byzantine model, availability of participants' local data, minority attackers, IID data distribution, etc.
To relax those constraints, this paper presents Robust-FL, the first prediction-based Byzantine-robust federated learning scheme where none of the assumptions is leveraged. The core idea of the Robust-FL is exploiting historical global model to construct an estimator based on which the local models will be filtered through similarity detection. We then cluster local models to adaptively adjust the acceptable differences between the local models and the estimator such that Byzantine users can be identified. Extensive experiments over different datasets show that our approach achieves the following advantages simultaneously: (i) independence of participants' local data, (ii) tolerance of majority attackers, (iii) generalization to variable Byzantine model.
Submission history
From: Wei Wan [view email][v1] Tue, 4 Oct 2022 07:48:19 UTC (1,070 KB)
[v2] Thu, 13 Oct 2022 03:01:29 UTC (1,070 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.