Computer Science > Artificial Intelligence
[Submitted on 4 Oct 2022]
Title:Type theory in human-like learning and inference
View PDFAbstract:Humans can generate reasonable answers to novel queries (Schulz, 2012): if I asked you what kind of food you want to eat for lunch, you would respond with a food, not a time. The thought that one would respond "After 4pm" to "What would you like to eat" is either a joke or a mistake, and seriously entertaining it as a lunch option would likely never happen in the first place. While understanding how people come up with new ideas, thoughts, explanations, and hypotheses that obey the basic constraints of a novel search space is of central importance to cognitive science, there is no agreed-on formal model for this kind of reasoning. We propose that a core component of any such reasoning system is a type theory: a formal imposition of structure on the kinds of computations an agent can perform, and how they're performed. We motivate this proposal with three empirical observations: adaptive constraints on learning and inference (i.e. generating reasonable hypotheses), how people draw distinctions between improbability and impossibility, and people's ability to reason about things at varying levels of abstraction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.