Computer Science > Hardware Architecture
[Submitted on 8 Oct 2022 (v1), last revised 16 Nov 2022 (this version, v2)]
Title:Low Error-Rate Approximate Multiplier Design for DNNs with Hardware-Driven Co-Optimization
View PDFAbstract:In this paper, two approximate 3*3 multipliers are proposed and the synthesis results of the ASAP-7nm process library justify that they can reduce the area by 31.38% and 36.17%, and the power consumption by 36.73% and 35.66% compared with the exact multiplier, respectively. They can be aggregated with a 2*2 multiplier to produce an 8*8 multiplier with low error rate based on the distribution of DNN weights. We propose a hardware-driven software co-optimization method to improve the DNN accuracy by retraining. Based on the proposed two approximate 3-bit multipliers, three approximate 8-bit multipliers with low error-rate are designed for DNNs. Compared with the exact 8-bit unsigned multiplier, our design can achieve a significant advantage over other approximate multipliers on the public dataset.
Submission history
From: Yao Lu [view email][v1] Sat, 8 Oct 2022 05:00:26 UTC (780 KB)
[v2] Wed, 16 Nov 2022 05:45:26 UTC (780 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.