Computer Science > Information Retrieval
[Submitted on 11 Oct 2022]
Title:FusionDeepMF: A Dual Embedding based Deep Fusion Model for Recommendation
View PDFAbstract:Traditional Collaborative Filtering (CF) based methods are applied to understand the personal preferences of users/customers for items or products from the rating matrix. Usually, the rating matrix is sparse in nature. So there are some improved variants of the CF method that apply the increasing amount of side information to handle the sparsity problem. Only linear kernel or only non-linear kernel is applied in most of the available recommendation-related work to understand user-item latent feature embeddings from data. Only linear kernel or only non-linear kernel is not sufficient to learn complex user-item features from side information of users. Recently, some researchers have focused on hybrid models that learn some features with non-linear kernels and some other features with linear kernels. But it is very difficult to understand which features can be learned accurately with linear kernels or with non-linear kernels. To overcome this problem, we propose a novel deep fusion model named FusionDeepMF and the novel attempts of this model are i) learning user-item rating matrix and side information through linear and non-linear kernel simultaneously, ii) application of a tuning parameter determining the trade-off between the dual embeddings that are generated from linear and non-linear kernels. Extensive experiments on online review datasets establish that FusionDeepMF can be remarkably futuristic compared to other baseline approaches. Empirical evidence also shows that FusionDeepMF achieves better performances compared to the linear kernels of Matrix Factorization (MF) and the non-linear kernels of Multi-layer Perceptron (MLP).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.