Computer Science > Databases
[Submitted on 11 Oct 2022]
Title:Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches -- extended version
View PDFAbstract:RDF and property graph models have many similarities, such as using basic graph concepts like nodes and edges. However, such models differ in their modeling approach, expressivity, serialization, and the nature of applications. RDF is the de-facto standard model for knowledge graphs on the Semantic Web and supported by a rich ecosystem for inference and processing. The property graph model, in contrast, provides advantages in scalable graph analytical tasks, such as graph matching, path analysis, and graph traversal. RDF-star extends RDF and allows capturing metadata as a first-class citizen. To tap on the advantages of alternative models, the literature proposes different ways of transforming knowledge graphs between property graphs and RDF. However, most of these approaches cannot provide complete transformations for RDF-star graphs. Hence, this paper provides a step towards transforming RDF-star graphs into property graphs. In particular, we identify different cases to evaluate transformation approaches from RDF-star to property graphs. Specifically, we categorize two classes of transformation approaches and analyze them based on the test cases. The obtained insights will form the foundation for building complete transformation approaches in the future.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.