Computer Science > Machine Learning
[Submitted on 12 Oct 2022 (v1), last revised 31 Jan 2024 (this version, v2)]
Title:On the Generalizability of ECG-based Stress Detection Models
View PDFAbstract:Stress is prevalent in many aspects of everyday life including work, healthcare, and social interactions. Many works have studied handcrafted features from various bio-signals that are indicators of stress. Recently, deep learning models have also been proposed to detect stress. Typically, stress models are trained and validated on the same dataset, often involving one stressful scenario. However, it is not practical to collect stress data for every scenario. So, it is crucial to study the generalizability of these models and determine to what extent they can be used in other scenarios. In this paper, we explore the generalization capabilities of Electrocardiogram (ECG)-based deep learning models and models based on handcrafted ECG features, i.e., Heart Rate Variability (HRV) features. To this end, we train three HRV models and two deep learning models that use ECG signals as input. We use ECG signals from two popular stress datasets - WESAD and SWELL-KW - differing in terms of stressors and recording devices. First, we evaluate the models using leave-one-subject-out (LOSO) cross-validation using training and validation samples from the same dataset. Next, we perform a cross-dataset validation of the models, that is, LOSO models trained on the WESAD dataset are validated using SWELL-KW samples and vice versa. While deep learning models achieve the best results on the same dataset, models based on HRV features considerably outperform them on data from a different dataset. This trend is observed for all the models on both datasets. Therefore, HRV models are a better choice for stress recognition in applications that are different from the dataset scenario. To the best of our knowledge, this is the first work to compare the cross-dataset generalizability between ECG-based deep learning models and HRV models.
Submission history
From: Pooja Prajod [view email][v1] Wed, 12 Oct 2022 14:12:04 UTC (116 KB)
[v2] Wed, 31 Jan 2024 15:50:17 UTC (116 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.