Computer Science > Human-Computer Interaction
[Submitted on 12 Oct 2022 (v1), last revised 19 Jan 2023 (this version, v2)]
Title:Autoencoder-Aided Visualization of Collections of Morse Complexes
View PDFAbstract:Though analyzing a single scalar field using Morse complexes is well studied, there are few techniques for visualizing a collection of Morse complexes. We focus on analyses that are enabled by looking at a Morse complex as an embedded domain decomposition. Specifically, we target 2D scalar fields, and we encode the Morse complex through binary images of the boundaries of decomposition. Then we use image-based autoencoders to create a feature space for the Morse complexes. We apply additional dimensionality reduction methods to construct a scatterplot as a visual interface of the feature space. This allows us to investigate individual Morse complexes, as they relate to the collection, through interaction with the scatterplot. We demonstrate our approach using a synthetic data set, microscopy images, and time-varying vorticity magnitude fields of flow. Through these, we show that our method can produce insights about structures within the collection of Morse complexes.
Submission history
From: Joshua Levine [view email][v1] Wed, 12 Oct 2022 22:39:01 UTC (6,073 KB)
[v2] Thu, 19 Jan 2023 01:38:23 UTC (6,071 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.